GuideFoot - Learn Together, Grow Smarter. Logo

Questions in Grade College

📝 Answered - Find the value of the expression. [tex]3^2[(13+5)-12][/tex] [tex]3^2[(13+5)-12]=\square[/tex] (Simplify your answer.)

📝 Answered - The vet said that Eva's cat, Chuckles, needs a special diet. So, Eva feeds Chuckles dry food in the morning and [tex]$\frac{3}{4}$[/tex] of a cup of wet food in the evening. In all, Eva feeds Chuckles [tex]$1 \frac{1}{4}$[/tex] cups of food each day. Which equation can you use to find the amount of dry food [tex]$d$[/tex] Eva feeds Chuckles? [tex]$\frac{3}{4} d=1 \frac{1}{4}$[/tex] [tex]$d+\frac{3}{4}=1 \frac{1}{4}$[/tex] [tex]$d-\frac{3}{4}=1 \frac{1}{4}$[/tex] [tex]$d+1 \frac{1}{4}=\frac{3}{4}$[/tex] Solve this equation for [tex]$d$[/tex] to find the amount of dry food Eva feeds Chuckles. To write a fraction, use a slash ( / ) to separate the numerator and denominator. cups

📝 Answered - Which statement is true? A. Plants and animals perform cellular respiration and photosynthesis. B. Plants perform cellular respiration and photosynthesis, but animals only perform cellular respiration. C. Animals only perform cellular respiration, and plants only perform photosynthesis. D. Animals perform cellular respiration and photosynthesis, but plants only perform photosynthesis.

📝 Answered - Match the expressions with their equivalent simplified forms. Tiles [tex]$10 x+6$[/tex] [tex]$2 x-8$[/tex] [tex]$3 x-5$[/tex] [tex]$2 x+14$[/tex] [tex]$2 x+6$[/tex] [tex]$10 x+14$[/tex] Pairs [tex]$\begin{array}{l} (-2 x+4)+2(2 x+1) \\ 2(3 x+5)-4(x-1) \\ 2(x-7)+(8 x+20) \longrightarrow \end{array}$[/tex]

📝 Answered - Directions: For the following piecewise functions, find the value of $k$ that makes the function continuous, or state that no such value exists. 26. $f(x)=\left\{\begin{array}{cc}\frac{9 x^2-4}{3 x+2}, & \text { if } x \neq-\frac{2}{3} \\ k, & \text { if } x=\frac{2}{3}\end{array}\right.$ 27. $g(x)=\left\{\begin{array}{ll}x^2-2, & \text { if } x<3 \\ k x+4, & \text { if } x \geq 3\end{array}\right.$ 28. $h(x)=\left\{\begin{array}{ll}3 x-1, & \text { if } x<2 \\ \ln (k), & \text { if } x \geq 2\end{array}\right.$ 29. $p(x)=\left\{\begin{array}{cc}\frac{x^2-x-6}{x^2-4}, & \text { if } x \leq-2 \\ k x^2, & \text { if } x>-2\end{array}\right.$

📝 Answered - The set of $\qquad$ numbers is $\{0,1,2,3,4,5, \ldots\}$.

📝 Answered - Question 2: Calculate the maximum height (MH) of a cricket ball if its height is given by the function [tex]$h(x)=2 x^3-12 x^2+1$[/tex] using the second derivative test. a) [tex]$MH =4$[/tex] b) [tex]$MH =3$[/tex] c) [tex]$MH =2$[/tex] d) [tex]$MH -1$[/tex]

📝 Answered - 18. [tex]x^4-5 x^3 \leq x^2-5 x[/tex]

📝 Answered - \begin{tabular}{|l|l|} \hline $x$ & $f(x)$ \\ \hline -2 & 4 \\ \hline 0 & 5 \\ \hline 2 & $a$ \\ \hline 3 & 7 \\ \hline \end{tabular} $f$ is an even function. $a=?

📝 Answered - Find the sum: $\frac{x-2}{x^2+1}+\frac{x+3}{x^2+1}$ A. $\frac{2 x+1}{2 x^2+2}$ B. $\frac{1}{x^2+1}$ C. $\frac{2 x+1}{x^2+1}$ D. $\frac{2}{x}$