GuideFoot - Learn Together, Grow Smarter. Logo

Questions in mathematics

📝 Answered - An electric device delivers a current of [tex]$15.0 A$[/tex] for 30 seconds. How many electrons flow through it?

📝 Answered - The given line segment has a midpoint at $(3,1)$. What is the equation, in slope-intercept form, of the perpendicular bisector of the given line segment? A. $y=\frac{1}{3} x$ B. $y=\frac{1}{3} x-2$ C. $y=3 x$ D. $y=3 x-8$

📝 Answered - Which expression is equivalent to $\sqrt[3]{\frac{10 x^5}{54 x^8}}$ ? Assume $x \neq 0$ A. $\frac{\sqrt[3]{10 x}}{3 x^2}$ B. $\frac{x(\sqrt[3]{5 x})}{3}$ C. $\frac{3(\sqrt[3]{5 x})}{x}$ D. $\frac{\sqrt[3]{5}}{3 x}$

📝 Answered - [tex]\frac{2}{7}+\frac{6}{3}=[/tex]

📝 Answered - Chapter 1 LP 1-1 (a) A va of the real-worls variables. p. 5 LP 1-2 (a) to fin operations in the ddition or subtri P 1-3 (a) 2[(3n P 1-4 20.5 ; 6 1-5 (a) They $r$ wer: $\frac{1}{5}$ is the 1 procal is alwa $s$ are rearrang he terms are $65(7+2) ; 4$ heck (1) d $.4+1.6+i$ ution p. 16 , tion p. 16, 551 p. 3. . 42-43) Let's Practice 9-7. Solve each equation using the square root property. a. [tex]x^2=4[/tex] b. [tex](x+1)^2=7[/tex] c. [tex](4 x+3)^2=25[/tex] d. [tex]6 x^2=54[/tex] e. [tex]x^2=\frac{1}{4}[/tex] f. [tex](3 h-2)^2=4[/tex] Solve each equation by factoring. g. [tex]x^2-4 x+3=0[/tex] h. [tex]2 k^2-40=-11 k[/tex] i. [tex]16 y^3=25 y[/tex] j. [tex]x^2-4 x=5[/tex] k. [tex]\frac{9}{25} m^2=121[/tex] l. [tex]-7-18 x+9 x^2=0[/tex]

📝 Answered - Evaluate [tex] \sum_{n=1}^{35} n^3+\sum_{n=1}^{35} n [/tex]

📝 Answered - Which solution to the equation $\frac{3}{2 g+8}=\frac{g+2}{g^2-16}$ is extraneous? A. $g=-4$ B. $g=-4$ and $g=16$ C. neither $g=-4$ nor $g=16$ D. $g=16$

📝 Answered - Which function is the inverse of [tex]f(x)=-5 x-4[/tex] ? A. [tex]f^{-1}(x)=-\frac{1}{5} x-\frac{4}{5}[/tex] B. [tex]f^{-1}(x)=-\frac{1}{5} x+\frac{4}{5}[/tex] C. [tex]f^{-1}(x)=-4 x+5[/tex] D. [tex]f^{-1}(x)=4 x+4[/tex]

📝 Answered - Solve for $x$ in this equation: $4^{5 x}=\left(\frac{1}{32}\right)^{1-x}$

📝 Answered - Examine the data below for a stalk of corn. | Day, $x$ | 9 | 12 | 22 | 40 | |---|---|---|---|---| | Height, $y$ (in) | 5 | 17 | 45 | 60 | Use logarithmic regression to find an equation of the form $y=a+b \ln (x)$ to model the data. $a=\square$ $b=\square$