GuideFoot - Learn Together, Grow Smarter. Logo

Questions in mathematics

📝 Answered - Multiply $\frac{x^2+6 x+8}{x^2+3 x-10} \cdot \frac{x^2+2 x-15}{x^2+3 x-4}$. State any restrictions on the variables. A. $\frac{x^2-x-6}{x^2-3 x+2}$; the variable restrictions are $x \neq-5 x \neq-4, x \neq 1, x \neq 2$ B. $\frac{x^2+x-6}{x^2-3 x+2}$; the variable restrictions are $x \neq-5 x \neq-4, x \neq 1, x \neq 2$ C. $\frac{x^2-x+6}{x^2-3 x+2}$; the variable restrictions are $x \neq-5 x \neq-4, x \neq 1, x \neq 2$ D. $\frac{x^2-x-6}{x^2+3 x+2} ;$ the variable restrictions are $x \neq-5 x \neq-4, x \neq 1, x \neq 2$

📝 Answered - For what value of [tex]$k$[/tex] do the equations [tex]$3x - 2y = 5$[/tex] and [tex]$x + y = k + 2$[/tex] have [tex]$P_x = 15$[/tex]?

📝 Answered - Solve $5 p-3=15-4 p$

📝 Answered - Find the slope and the $y$-intercept of the line. $2 x-3 y=9$ (Please provide ONLY the SLOPE, as a decimal rounded to three decimal places)

📝 Answered - What is the solution to this inequality? $\frac{x}{10}+6 \geq 8$ A. $x \geq 20$ B. $x \leq 74$ C. $x \leq 20$ D. $x \geq 74$

📝 Answered - In order to qualify for a role in a play, an actor must be taller than 64 inches but shorter than 68 inches. The inequality [tex]$64\ \textless \ x\ \textless \ 68$[/tex], where [tex]$x$[/tex] represents height, can be used to represent the height range. Which is another way of writing the inequality? A. [tex]$x\ \textgreater \ 64$[/tex] and [tex]$x\ \textless \ 68$[/tex] B. [tex]$x\ \textgreater \ 64$[/tex] or [tex]$x\ \textless \ 68$[/tex] C. [tex]$x\ \textless \ 64$[/tex] and [tex]$x\ \textless \ 68$[/tex] D. [tex]$x\ \textless \ 64$[/tex] or [tex]$x\ \textless \ 68$[/tex]

📝 Answered - Find the value of the variable $y$ in the equation $-5.7+y=8.2$ A) -2.5 B) 13.9 C) -13.9 D) 2.5

📝 Answered - 3 = 3 - n * n^2 - 4 * col as an extinary number is: A. 230 B. 23 C. -23 D. 10.23

📝 Answered - In two or more complete sentences, explain how to solve the cube root equation, $\sqrt[3]{x-1}+2=0$.

📝 Answered - Completely simplify $\frac{\frac{x^2+1}{3}}{\frac{x+1}{3}}$ and state any restrictions on the variable. A. $\frac{x^2+1}{x+1}, x \neq-1$ B. $\frac{3\left(x^2+1\right)}{x+1}, x \neq-1$ C. $x-1, x \neq-1$ D. $\frac{x^2+1}{3(x+1)}, x \neq-1$