Search
Questions in mathematics
📝 Answered - Select the correct answer. What is the justification for step 4 in the solution process? [tex]\begin{array}{rlrl} & \frac{9}{2} b+11-\frac{5}{6} b & =b+2 \< \text { Step 1 } & : & \frac{22}{6} b+11 & =b+2 \< \text { Step 2 } & & & \frac{8}{3} b+11 & =2 \< \text { Step 3 } & & & \frac{8}{8} b & =-9 \< \text { Step 4 } & & & b & =-\frac{27}{8}< \end{array}[/tex] A. combining like terms B. the multiplication property of equality C. the subtraction property of equality D. the addition property of equality
📝 Answered - Select the correct answer. Given the formula below, solve for [tex]$x$[/tex]. [tex]$y-y_1=m\left(x-x_1\right)$[/tex] A. [tex]$x=\frac{y-y_1+x_1}{m}$[/tex] B. [tex]$x=\frac{y-y_1}{m}+x_1$[/tex] C. [tex]$x=\frac{m\left(y-y_1\right)}{x_1}$[/tex] D. [tex]$x=\frac{y-y_1}{m}-x_1[/tex]
📝 Answered - Solve the equation. [tex]\begin{array}{c} \log _6(x-1) + \log _6(x+3)=2\\ x=[?]\\ \end{array}[/tex]
📝 Answered - Convert the following number into correct scientific notation. [tex] \begin{array}{l} 56.42 \times 10^{-6} \ {[?] \times 10^{[?]}} \end{array} [/tex] Enter the coefficient in the green box and the exponent in the yellow box. Coefficient
📝 Answered - What is the value of $2 t^2+6$ when $t=5$?
📝 Answered - Atynice the Jakes of the connery $p$ and $Q$ equation. $x^{2 x}-Q^{2 x}=6 \operatorname{arch} 2 x+4 \cos 12$
📝 Answered - Which manipulations to this equation maintain its balance? [tex]3 x+3=12[/tex] Drag each tile to the correct location on the table. Balanced Not Balanced [tex]3 x+3=12+3[/tex] [tex]\frac{3 x+3}{3}=\frac{12}{3}[/tex] [tex]\frac{1}{3}(3 x+3)=\frac{1}{3}(12)[/tex] [tex]\frac{3 x}{3}+3=\frac{12}{3}[/tex] [tex]3 x+3-3=12-3[/tex]
📝 Answered - Solve the equation. [tex]\begin{array}{c}\log _6(x-2)+\log _6(x+3)=2 \\x=[?]\end{array}[/tex]
📝 Answered - The focus of a parabola is located at $(4,0)$, and the directrix is located at $x=-4$. Which equation represents the parabola? A. $y^2=-x$ B. $y^2=x$ C. $y^2=-16 x$ D. $y^2=16 x
📝 Answered - Solve for $r$. $\begin{array}{l} \frac{r}{2}=9 \ r=[?]\end{array}$
« Prev
1
...
1587
1588
1589
1590
1591
...
3347
Next »