Search
Questions in mathematics
📝 Answered - Tanisha is graphing the function [tex]$f(x)=25\left(\frac{3}{5}\right)^x$[/tex]. She begins by plotting the point [tex]$(1,15)$[/tex]. Which could be the next point she plots on the graph? [tex]$(2,9)$[/tex] [tex]$(2,-10)$[/tex] [tex]$\left(2,14 \frac{2}{5}\right)$[/tex] [tex]$(2,5)$[/tex]
📝 Answered - Fill in the blank to complete the fundamental identity. [tex]$\tan ^2 \theta+1=$[/tex]
📝 Answered - Which expression can be used to find the salary, in thousands, for the second year? Select all that apply. $400+(0.05) 400$ $400+(1.05) 400$ 400(1.05) $(0.05) 400+(.05) 400$
📝 Answered - Let [tex]$Z \sim N(0,1)$[/tex]. Find [tex]$a$[/tex] so that [tex]$P(Z > a)=0.01$[/tex].
📝 Answered - \frac{2^4 \cdot 2^5 \cdot 2^5}{2^3}=
📝 Answered - 13) [tex]y=(x-1)^3(x+2)^2[/tex] changes sign x=1 bl x=2 c| x=-2 C) [tex]x=-1[/tex] 14) What is [tex]y[/tex]-intercept? [tex]Y=-(x+1)^2(x-3)(x-2)[/tex] a) [tex](0,6)[/tex] di [tex](0,-5)[/tex] b) [tex](0,5)[/tex] (c) [tex](0,-6)[/tex]
📝 Answered - The formula [tex]S = C(1+r)^t[/tex] models inflation, where [tex]C[/tex] = the value today, [tex]r[/tex] = the annual inflation rate (in decimal form), and [tex]S[/tex] = the inflated value [tex]t[/tex] years from now. If the inflation rate is 5%, how much will a house now worth $66,000 be worth in 20 years? Round your answer to the nearest dollar. The house will be worth $
📝 Answered - Write $6 \sqrt{20}$ in simple square root form. $8 \sqrt{5}$ 60 $30 \sqrt{4}$ $12 \sqrt{5}$
📝 Answered - The table shows a student's proof of the quotient rule for logarithms. Let [tex]$M =b^x$[/tex] and [tex]$N =b^y$[/tex] for some real numbers [tex]$x$[/tex] and [tex]$y$[/tex]. | | Step | Reason | |---|---------------------------------------|--------------------------------------------------------------| | 1 | [tex]$\log _b\left(\frac{M}{N}\right)$[/tex] | Given | | 2 | [tex]$=\log _b\left(\frac{b^X}{b^Y}\right)$[/tex] | Substitution | | 3 | [tex]$=\log _b\left(b^x\right)-\log _b\left(b^y\right)$[/tex] | Properties of logarithms | | 4 | [tex]$=x-y$[/tex] | Logarithm property [tex]$\log _b\left(b^9\right)=c$[/tex] | | 5 | [tex]$=\log _b(M)-\log _b(N)$[/tex] | Substitution | What is the error in the proof? A. The error is in step 3. The reason should be the quotient property of exponents. B. The error is in step 3. You cannot use a property of logarithms to prove that same property.
📝 Answered - What is the simplified form of the following expression? $5 \sqrt{8}-\sqrt{18}-2 \sqrt{2}$
« Prev
1
...
1573
1574
1575
1576
1577
...
3347
Next »