GuideFoot - Learn Together, Grow Smarter. Logo

Questions in mathematics

📝 Answered - 15-(m+p); m=-5 & p=-10

📝 Answered - Which expression demonstrates the use of the commutative property of addition in the first step of simplifying the expression $(-1+i)+(21+5i)$? A. $(-1+i)+(21+5i)+0$ B. $-1+(i+21)+5i$ C. $(-1+21)+(i+5i)$ D. $-(1-i)+(21+5i)$

📝 Answered - Which ordered pairs could be points on a line parallel to the line that contains $(3,4)$ and $(-2,2)$? Check all that apply. A. $(-2,-5)$ and $(-7,-3)$ B. $(-1,1)$ and $(-6,-1)$ C. $(0,0)$ and $(2,5)$ D. $(1,0)$ and $(6,2)$ E. $(3,0)$ and $(8,2)$

📝 Answered - Solve the equation for $x$. $3(x+2)=2(2-x)$ A. $x=-2$ B. $x=-\frac{2}{5}$ C. $x=\frac{1}{2}$ D. $x=3$

📝 Answered - Simplify the expression. [tex]\begin{array}{l} (x^3)^{-3} \\ \frac{1}{x^{[?]}} \end{array}[/tex]

📝 Answered - Let $f$ be a function defined on $[0, \infty)$. Then the function $F$ defined by $F(s)=\int_0^{\infty} e^{-s t} f(t) d t$ is said to be the Laplace transform of $f$. The domain of $F(s)$ is the set of values of $s$ for which the given improper integral converges. Use the definition of a Laplace transform to find $L \{f(t)\}$. (Write your answer as a function of $s$.) $\begin{array}{c} f(t)=\left\{\begin{array}{rr} -1, & 0 \leq t<1 \\ 1, & t \geq 1 \end{array}\right. \\ c\{f(t)\}=\square$ $\end{array}$

📝 Answered - The area of a rectangle is [tex]$(x^3-5 x^2+3 x-15)$[/tex], and the width of the rectangle is [tex]$(x^2+3)$[/tex]. If area = length [tex]$\times$[/tex] width, what is the length of the rectangle? A. [tex]$x+5$[/tex] B. [tex]$x-15$[/tex] C. [tex]$x+15$[/tex] D. [tex]$x-5$[/tex]

📝 Answered - Simplify $3 L: \frac{1}{2} L: \frac{3}{4} L: 1 L$

📝 Answered - If [tex]\vec{a}[/tex] is parallel to [tex]\vec{b}[/tex], then what is the value of [tex]\vec{a} \cdot \vec{b}[/tex] equal to? a) [tex]\vec{a} \times \vec{b}[/tex] b) [tex]90^{\circ}[/tex] c) 0 d) 1

📝 Answered - What is the simplified form of the following expression? $7(\sqrt[3]{2 x})-3(\sqrt[3]{16 x})-3(\sqrt[3]{8 x})$ A. $-5(\sqrt[3]{2 x})$ B. $5(\sqrt[3]{x})$ C. $\sqrt[3]{2 x}-6(\sqrt[3]{x})$ D. $-(\sqrt[3]{2 x})-6(\sqrt[3]{x})$