GuideFoot - Learn Together, Grow Smarter. Logo

Questions in Grade College

📝 Answered - Use synthetic division to solve $(x^4-1) \div(x-1)$. What is the quotient? A. $x^3-x^2+x-1$ B. $x^3$ C. $x^3+x^2+x+1$ D. $x^3-2$

📝 Answered - Which of the following statements is false? A. Cardiac output is equal to total capillary flow B. Increased HR increases SV and CO C. Increased EDV increases SV D. Increased preload increases SV E. Decreased ESV increases SV

📝 Answered - Simplify this expression: [tex]12 a+7 x-3 a-2 x[/tex]

📝 Answered - Sharon's turtle escaped from her backyard sometime in the last few hours. According to her calculations, the farthest the turtle could have gone is 4 blocks down the road in either direction. If Sharon lives on the $112^{\text {th }}$ block of town, which equation can be used to find the block numbers that represent the farthest distance that the turtle may be? $|x-112|=0$ $|x-112|=4$ $|4-112|=x$ $|112-4|=x$

📝 Answered - What value of [tex]$t$[/tex] makes the statement true? [tex]$\begin{array}{l} \left(4 x^3+5\right)\left(2 x^3+3\right)=8 x^6+t x^3+15 \\ t= \end{array}$[/tex]

📝 Answered - $\frac{3}{c-2}=\frac{3}{2 c-5}$

📝 Answered - As displayed on a production possibilities curve, what will an increase in technology allow a society to do? A. Produce more, as long as the resources are also available. B. Produce less, because more resources are spent on developing technology. C. It will not affect society's production. D. The society will spend more on the same level of production.

📝 Answered - 13. Find the domain of [tex]f(x)=\sqrt{4-x^2}[/tex] A. [-2,2] B. (-2,2) C. (-2,2) D. [-2,2]. 14. Find the domain of [tex]f(x)=\frac{3}{5^2-9}[/tex] A. [tex]R \\{9\}[/tex] B. [tex]R \\(-3,3)[/tex] C. [tex]R \\{3\}[/tex] D. [tex]R \\{-9\}[/tex] 15. The domain of [tex]f(x)=x^2 \ln x[/tex] is A. (-x, x) B. (1, x) C. (0,1) D. (0, x). 16. Find the domain of [tex]\sqrt{4-7}[/tex] A. (0, x) B. 7 C. (-x, 7] D. [7, x). 17. Let [tex]f: R \rightarrow R[/tex] be defined by [tex]f(x)=\frac{3}{x^2-1}[/tex]. Find the domain of f. A. [tex]R \\(4)[/tex] B. [tex]R \\{2\}[/tex] C. [tex]R \\{-4\}[/tex] D. [tex]R \{-2.2\}[/tex]. 18. Find the inverse [tex]g^{-1}(x)[/tex] of [tex]g(x)=\sqrt{x-3}[/tex] A. [tex](x-3)^2[/tex] B. [tex]x^2+3[/tex] C. [tex]x^2-3[/tex] D. [tex]\frac{1}{2}-3[/tex] 19. The inverse of [tex]f(x)=2 x-1[/tex] is A. x-1 B. [tex]\frac{x+1}{2}[/tex] C. [tex]\frac{1}{x+2}[/tex] D. [tex]x^2[/tex]. 20. Find the inverse of [tex]f(x)=x^3-2[/tex]. A. [tex](x+2)[/tex] B. [tex](x-2)[/tex] C. [tex](x-2)[/tex] D. [tex](x+2)[/tex]

📝 Answered - The least common multiple of 3, 4, 6, and 8 is A) 96. B) 24. C) 72. D) 8.

📝 Answered - Consider the function [tex]f(x)=x^2+12 x+11[/tex]. [tex]x[/tex]-intercepts: [tex] \begin{array}{l} 0 = x ^2+ 1 2 x+11 \\ 0=(x+1)(x+11) \end{array} [/tex] [tex]y[/tex]-intercept: [tex]f(0)=(0)^2+12(0)+11[/tex] What are the intercepts of the function? The [tex]x[/tex]-intercepts are $\square$ The [tex]y[/tex]-intercept is $\square$