GuideFoot - Learn Together, Grow Smarter. Logo

In Mathematics / College | 2025-07-07

If [tex]z_1=2+3i[/tex] and [tex]z_2=4+2i[/tex], prove that [tex]\overline{\left(\frac{z_1}{z_2}\right)}=\frac{\bar{z}_1}{z_2}[/tex]

Asked by metalhammad

Answer (1)

Calculate z 2 ​ z 1 ​ ​ = 4 + 2 i 2 + 3 i ​ = 0.7 + 0.4 i .
Find the conjugate of z 2 ​ z 1 ​ ​ : ( z 2 ​ z 1 ​ ​ ) ​ = 0.7 − 0.4 i .
Calculate z 2 ​ z 1 ​ ​ ​ = 4 + 2 i 2 − 3 i ​ = 0.1 − 0.8 i .
Since 0.7 − 0.4 i  = 0.1 − 0.8 i , the original statement ( z 2 ​ z 1 ​ ​ ) ​ = z 2 ​ z 1 ​ ​ ​ is false. F a l se ​

Explanation

Understanding the Problem We are given two complex numbers, z 1 ​ = 2 + 3 i and z 2 ​ = 4 + 2 i . Our goal is to prove that ( z 2 ​ z 1 ​ ​ ) ​ = z 2 ​ ​ z 1 ​ ​ ​ , where z denotes the complex conjugate of z .

Calculating z1/z2 First, let's compute z 2 ​ z 1 ​ ​ . To do this, we multiply the numerator and denominator by the conjugate of the denominator: z 2 ​ z 1 ​ ​ = 4 + 2 i 2 + 3 i ​ = ( 4 + 2 i ) ( 4 − 2 i ) ( 2 + 3 i ) ( 4 − 2 i ) ​ = 16 − 8 i + 8 i − 4 i 2 8 − 4 i + 12 i − 6 i 2 ​ = 16 + 4 8 + 6 + 8 i ​ = 20 14 + 8 i ​ = 10 7 ​ + 5 2 ​ i = 0.7 + 0.4 i .

Finding the Conjugate of z1/z2 Next, we find the conjugate of z 2 ​ z 1 ​ ​ : ( z 2 ​ z 1 ​ ​ ) ​ = 0.7 + 0.4 i ​ = 0.7 − 0.4 i .

Finding Conjugates of z1 and z2 Now, let's find the conjugates of z 1 ​ and z 2 ​ : z 1 ​ ​ = 2 + 3 i ​ = 2 − 3 i
z 2 ​ ​ = 4 + 2 i ​ = 4 − 2 i

Calculating conjugate(z1) / conjugate(z2) Then, we compute z 2 ​ ​ z 1 ​ ​ ​ : z 2 ​ ​ z 1 ​ ​ ​ = 4 − 2 i 2 − 3 i ​ = ( 4 − 2 i ) ( 4 + 2 i ) ( 2 − 3 i ) ( 4 + 2 i ) ​ = 16 + 4 8 + 4 i − 12 i − 6 i 2 ​ = 20 8 + 6 − 8 i ​ = 20 14 − 8 i ​ = 10 7 ​ − 5 2 ​ i = 0.7 − 0.4 i .

Conclusion Comparing the results, we see that ( z 2 ​ z 1 ​ ​ ) ​ = 0.7 − 0.4 i and z 2 ​ ​ z 1 ​ ​ ​ = 0.7 − 0.4 i . Therefore, we have proven that ( z 2 ​ z 1 ​ ​ ) ​ = z 2 ​ ​ z 1 ​ ​ ​ .

Checking the Original Statement However, the original problem asks to prove that ( z 2 ​ z 1 ​ ​ ) ​ = z 2 ​ z 1 ​ ​ ​ . Let's calculate z 2 ​ z 1 ​ ​ ​ : z 2 ​ z 1 ​ ​ ​ = 4 + 2 i 2 − 3 i ​ = ( 4 + 2 i ) ( 4 − 2 i ) ( 2 − 3 i ) ( 4 − 2 i ) ​ = 16 + 4 8 − 4 i − 12 i + 6 i 2 ​ = 20 8 − 6 − 16 i ​ = 20 2 − 16 i ​ = 10 1 ​ − 5 4 ​ i = 0.1 − 0.8 i .
Since ( z 2 ​ z 1 ​ ​ ) ​ = 0.7 − 0.4 i and z 2 ​ z 1 ​ ​ ​ = 0.1 − 0.8 i , we can conclude that ( z 2 ​ z 1 ​ ​ ) ​  = z 2 ​ z 1 ​ ​ ​ . Therefore, the original statement is false.


Examples
Complex numbers are used extensively in electrical engineering to analyze AC circuits. For example, the impedance of a circuit element, which is the opposition to the flow of current, can be represented as a complex number. The conjugate of a complex number is used in calculations involving power and impedance matching. Understanding how to manipulate complex numbers and their conjugates is crucial for designing and analyzing electrical circuits.

Answered by GinnyAnswer | 2025-07-07