GuideFoot - Learn Together, Grow Smarter. Logo

In Mathematics / College | 2025-07-04

Given that [tex]$\log _a x=3, \log _a y=4$[/tex], and [tex]$\log _a z=5$[/tex], find the following.
[tex]$\log _a \frac{\sqrt[3]{y^2 z^4}}{\sqrt[3]{x^2 z^{-4}}}$[/tex]

Asked by Blackjhay

Answer (1)

Use logarithm properties to expand the expression: lo g a ​ 3 x 2 z − 4 ​ 3 y 2 z 4 ​ ​ = 3 1 ​ ( 2 lo g a ​ y + 4 lo g a ​ z ) − 3 1 ​ ( 2 lo g a ​ x − 4 lo g a ​ z ) .
Substitute the given values: lo g a ​ x = 3 , lo g a ​ y = 4 , and lo g a ​ z = 5 .
Simplify the expression: 3 1 ​ ( 2 ( 4 ) + 4 ( 5 )) − 3 1 ​ ( 2 ( 3 ) − 4 ( 5 )) = 3 1 ​ ( 28 ) − 3 1 ​ ( − 14 ) .
Calculate the final result: 3 28 ​ + 3 14 ​ = 3 42 ​ = 14 . The answer is 14 ​ .

Explanation

Understanding the Problem We are given the values of lo g a ​ x , lo g a ​ y , and lo g a ​ z , and we want to find the value of the expression lo g a ​ 3 x 2 z − 4 ​ 3 y 2 z 4 ​ ​ . We will use properties of logarithms to simplify the expression and then substitute the given values.

Simplifying the Expression First, we can rewrite the expression using the properties of logarithms: lo g a ​ 3 x 2 z − 4 ​ 3 y 2 z 4 ​ ​ = lo g a ​ ( y 2 z 4 ) 1/3 − lo g a ​ ( x 2 z − 4 ) 1/3 = 3 1 ​ lo g a ​ ( y 2 z 4 ) − 3 1 ​ lo g a ​ ( x 2 z − 4 ) = 3 1 ​ ( lo g a ​ y 2 + lo g a ​ z 4 ) − 3 1 ​ ( lo g a ​ x 2 + lo g a ​ z − 4 ) = 3 1 ​ ( 2 lo g a ​ y + 4 lo g a ​ z ) − 3 1 ​ ( 2 lo g a ​ x − 4 lo g a ​ z )

Substituting the Values and Calculating Now, we substitute the given values lo g a ​ x = 3 , lo g a ​ y = 4 , and lo g a ​ z = 5 into the expression: = 3 1 ​ ( 2 ( 4 ) + 4 ( 5 )) − 3 1 ​ ( 2 ( 3 ) − 4 ( 5 )) = 3 1 ​ ( 8 + 20 ) − 3 1 ​ ( 6 − 20 ) = 3 1 ​ ( 28 ) − 3 1 ​ ( − 14 ) = 3 28 ​ + 3 14 ​ = 3 42 ​ = 14

Final Answer Therefore, lo g a ​ 3 x 2 z − 4 ​ 3 y 2 z 4 ​ ​ = 14 .


Examples
Logarithms are used in many scientific fields, such as physics, chemistry, and engineering. For example, the Richter scale, which measures the magnitude of earthquakes, is a logarithmic scale. This means that an earthquake of magnitude 6 is ten times stronger than an earthquake of magnitude 5. Logarithms are also used in computer science to analyze the complexity of algorithms. Understanding and manipulating logarithmic expressions is therefore a valuable skill in many areas.

Answered by GinnyAnswer | 2025-07-04