GuideFoot - Learn Together, Grow Smarter. Logo

In Mathematics / College | 2025-07-03

Escribe, en tu cuaderno, el valor perteneciente a cada expresiΓ³n que forman:
a) $\left[(2)^2\right]^{-1}$
b) $\left\{\left[\left(\frac{192}{15}\right)^5\right]^0\right\}^{-3}$
c) $(0,9)^{15} \div(0,9)^{12}$
d) $[4]^2$
e) $\left[\frac{\left(4^2\right)^{-1}}{16^{-9}}\right]^{-3}$
f) $\frac{\left(\frac{2}{5}\right)^{-2}}{\left(\frac{5}{2}\right)\left(\frac{5}{2}\right)} \times 2$
g) $\frac{25^{-1}}{5^{-2}}+\frac{0,05^{-2}}{0,1^{-3}}$

Asked by kebian2

Answer (2)

Simplify each expression using exponent rules.
a) Apply the rule ( a m ) n = a mn to get 4 1 ​ .
b) Use a 0 = 1 and ( a m ) n = a mn to get 1 .
c) Apply a m Γ· a n = a m βˆ’ n to get 0.729 .
d) Direct calculation yields 16 .
e) Simplify using ( a m ) n = a mn and a n a m ​ = a m βˆ’ n to get 1 6 βˆ’ 24 .
f) Use ( b a ​ ) βˆ’ n = ( a b ​ ) n to get 2 .
g) Rewrite terms as fractions and use a βˆ’ n = a n 1 ​ to get 1.4 .
4 1 ​ , 1 , 0.729 , 16 , 1 6 βˆ’ 24 , 2 , 1.4 ​

Explanation

Introduction We will simplify each expression using exponent rules and fraction arithmetic.

Simplifying a a) [ ( 2 ) 2 ] βˆ’ 1 = [ 4 ] βˆ’ 1 = 4 1 ​

Simplifying b b) { [ ( 15 192 ​ ) 5 ] 0 } βˆ’ 3 = {[ 1 ] 0 } βˆ’ 3 = { 1 } βˆ’ 3 = 1

Simplifying c c) ( 0 , 9 ) 15 Γ· ( 0 , 9 ) 12 = ( 0.9 ) 15 βˆ’ 12 = ( 0.9 ) 3 = 0.729

Simplifying d d) [ 4 ] 2 = 4 Γ— 4 = 16

Simplifying e e) [ 1 6 βˆ’ 9 ( 4 2 ) βˆ’ 1 ​ ] βˆ’ 3 = [ 1 6 βˆ’ 9 1 6 βˆ’ 1 ​ ] βˆ’ 3 = [ 1 6 βˆ’ 1 βˆ’ ( βˆ’ 9 ) ] βˆ’ 3 = [ 1 6 8 ] βˆ’ 3 = 1 6 βˆ’ 24

Simplifying f f) ( 2 5 ​ ) ( 2 5 ​ ) ( 5 2 ​ ) βˆ’ 2 ​ Γ— 2 = ( 2 5 ​ ) ( 2 5 ​ ) ( 2 5 ​ ) 2 ​ Γ— 2 = ( 2 5 ​ ) 2 ( 2 5 ​ ) 2 ​ Γ— 2 = 1 Γ— 2 = 2

Simplifying g g) 5 βˆ’ 2 2 5 βˆ’ 1 ​ + 0 , 1 βˆ’ 3 0 , 0 5 βˆ’ 2 ​ = 5 βˆ’ 2 ( 5 2 ) βˆ’ 1 ​ + ( 10 1 ​ ) βˆ’ 3 ( 20 1 ​ ) βˆ’ 2 ​ = 5 βˆ’ 2 5 βˆ’ 2 ​ + 1 0 3 2 0 2 ​ = 1 + 1000 400 ​ = 1 + 0.4 = 1.4

Final Answer The simplified expressions are: a) 4 1 ​ b) 1 c) 0.729 d) 16 e) 1 6 βˆ’ 24 f) 2 g) 1.4


Examples
Understanding and simplifying expressions with exponents is crucial in many areas of science and engineering. For example, in physics, the intensity of light decreases with the square of the distance from the source, which can be expressed using exponents. In finance, compound interest calculations involve exponents to determine the future value of an investment. These skills are also essential in computer science for analyzing algorithms and data structures.

Answered by GinnyAnswer | 2025-07-03

The simplified values for the expressions are: a) 4 1 ​ , b) 1, c) 0.729, d) 16, e) 1 6 βˆ’ 24 , f) 2, g) 1.4.
;

Answered by Anonymous | 2025-07-04