GuideFoot - Learn Together, Grow Smarter. Logo

In Spanish / College | 2025-07-03

Si $p$ es "Jaime habla inglés" y $q$ es "Jaime escribe en francés". ¿Con cuáles de las siguientes afirmaciones se forma la siguiente proposición $\Gamma(p \wedge q)$?

1. No es verdad que Jaime hable inglés
2. Jaime habla inglés
3. Jaime escribe francés
4. No es verdad que Jaime escribe en francés
5. Jaime escribe en inglés

A. $1 y^4$
B. $2 y 5$
C. 1 y 5
D. $2 y^3$

Asked by palavalery

Answer (2)

The problem involves logical propositions and their negations.
p is 'Jaime speaks English' and q is 'Jaime writes in French'.
We need to find the combination of statements that forms ¬ ( p ∧ q ) .
The closest option is A: ¬ p ∧ ¬ q , which translates to 'Jaime does not speak English and Jaime does not write in French'. A ​

Explanation

Problem Analysis Let's analyze the given problem. We have two propositions:

p : Jaime habla inglés (Jaime speaks English) q : Jaime escribe en francés (Jaime writes in French)
We are asked to find which combination of the given statements forms the proposition Γ ( p ∧ q ) , which means the negation of ( p ∧ q ) . In other words, we are looking for the negation of 'Jaime speaks English and writes in French'.
Let's translate the given options into logical notation:

No es verdad que Jaime hable inglés: ¬ p
Jaime habla inglés: p
Jaime escribe francés: q
No es verdad que Jaime escribe en francés: ¬ q
Jaime escribe en inglés: This statement is not directly related to p or q , so let's call it r .

Now let's analyze the given combinations:
A. 1 y 4: ¬ p ∧ ¬ q (Jaime does not speak English and Jaime does not write in French) B. 2 y 5: p ∧ r (Jaime speaks English and Jaime writes in English) C. 1 y 5: ¬ p ∧ r (Jaime does not speak English and Jaime writes in English) D. 2 y 3: p ∧ q (Jaime speaks English and Jaime writes in French)
We are looking for ¬ ( p ∧ q ) , which, by De Morgan's law, is equivalent to ¬ p ∨ ¬ q (Jaime does not speak English or Jaime does not write in French). None of the options exactly match this. However, option A, ¬ p ∧ ¬ q , is the closest, although it means 'Jaime does not speak English and Jaime does not write in French'. Option D is simply p ∧ q , which is the opposite of what we want.
Since none of the options perfectly represent ¬ ( p ∧ q ) , let's re-examine the question. The question asks which combination forms the proposition Γ ( p ∧ q ) . The closest option is A, as it involves the negation of both p and q . However, it's important to note that ¬ ( p ∧ q ) is not the same as ¬ p ∧ ¬ q . The former is ¬ p ∨ ¬ q , while the latter is ¬ p ∧ ¬ q .

Detailed Explanation The correct answer should be the negation of 'Jaime habla inglés y escribe en francés', which translates to 'It is not true that Jaime speaks English and writes in French'. This is logically equivalent to 'Jaime does not speak English or Jaime does not write in French'.

Option A: 'No es verdad que Jaime hable inglés y no es verdad que Jaime escribe en francés' translates to 'Jaime does not speak English and Jaime does not write in French'. This is ¬ p ∧ ¬ q .
Option B: 'Jaime habla inglés y Jaime escribe en inglés' translates to 'Jaime speaks English and Jaime writes in English'. This is p ∧ r .
Option C: 'No es verdad que Jaime hable inglés y Jaime escribe en inglés' translates to 'Jaime does not speak English and Jaime writes in English'. This is ¬ p ∧ r .
Option D: 'Jaime habla inglés y Jaime escribe francés' translates to 'Jaime speaks English and Jaime writes in French'. This is p ∧ q .
Since ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q , we are looking for an option that expresses 'not p or not q'. Option A, ¬ p ∧ ¬ q , is 'not p and not q'. Option D, p ∧ q , is the opposite of what we want. None of the options perfectly match the negation of the conjunction. However, the question asks which combination forms the negation. In this context, option A is the closest, as it negates both p and q , even though it uses 'and' instead of 'or'.

Final Answer Given the options, the closest representation of ¬ ( p ∧ q ) is option A, which states 'No es verdad que Jaime hable inglés y no es verdad que Jaime escribe en francés' ( ¬ p ∧ ¬ q ). Although this is not logically equivalent to ¬ p ∨ ¬ q , it is the best choice among the given options.

Conclusion Therefore, the answer is A.


Examples
Understanding logical propositions and their negations is crucial in various fields, such as computer science, mathematics, and law. For instance, in programming, you might need to negate a complex condition in an if statement. If the condition is 'the user is logged in and has admin privileges', the negation would be 'the user is not logged in or does not have admin privileges'. This ensures that the correct action is taken based on the opposite scenario. Similarly, in legal contexts, understanding the negation of a statement is essential for interpreting contracts and laws accurately.

Answered by GinnyAnswer | 2025-07-03

La opción que mejor representa la proposición negada, aunque no exactamente, es la opción A, que corresponde a "No es verdad que Jaime hable inglés" y "No es verdad que Jaime escribe en francés". Esto se traduce a e g p y e g q . Sin embargo, esto no es igual a lo que buscamos que es e g p o e g q .
;

Answered by Anonymous | 2025-07-04