To solve the integral K = ∫ ( 1 − cos x ) 2 d x , we can use trigonometric identities and substitution methods to simplify and integrate.
Here's a step-by-step guide to solve it:
Expand the Expression : To handle the integral ∫ ( 1 − cos x ) 2 d x , first expand the squared term:
( 1 − cos x ) 2 = 1 − 2 cos x + cos 2 x .
Break Down the Integral : Using the expanded expression, the integral becomes:
K = ∫ ( 1 − 2 cos x + cos 2 x ) d x = ∫ 1 d x − ∫ 2 cos x d x + ∫ cos 2 x d x .
Integrate Each Term :
The integral of 1 is straightforward: ∫ 1 d x = x .
The integral of 2 cos x is similarly straightforward: ∫ 2 cos x d x = 2 sin x .
For ∫ cos 2 x d x , use the power-reduction identity: cos 2 x = 2 1 + cos 2 x . Substituting this identity, we have: ∫ cos 2 x d x = ∫ 2 1 + cos 2 x d x = 2 1 ∫ 1 d x + 2 1 ∫ cos 2 x d x .
This further simplifies to: 2 1 x + 4 1 sin 2 x .
Putting it all together, we get:
Combine the Results :
Combine everything: K = x − 2 sin x + 2 1 x + 4 1 sin 2 x + C , where C is the constant of integration.
Simplify the Expression :
Combine like terms: K = 2 3 x − 2 sin x + 4 1 sin 2 x + C .
Thus, the integral ∫ ( 1 − cos x ) 2 d x evaluates to: K = 2 3 x − 2 sin x + 4 1 sin 2 x + C .