In this question, we are asked to find the Cartesian product of sets, which is a fundamental concept in set theory. The Cartesian product of two sets A and B, denoted as A × B , is the set of all ordered pairs ( a , b ) where a is an element of A and b is an element of B.
Finding A × B:
(a) A = {1, 2} and B = {5, 6}
To find A × B , we list all possible ordered pairs:
A × B = {( 1 , 5 ) , ( 1 , 6 ) , ( 2 , 5 ) , ( 2 , 6 )}
(b) A = {2, 5} and B = {4, 6}
[tex]A \times B[/tex] is:
A × B = {( 2 , 4 ) , ( 2 , 6 ) , ( 5 , 4 ) , ( 5 , 6 )}
(c) A = {3, 4} and B = {a, b}
[tex]A \times B[/tex] is:
A × B = {( 3 , a ) , ( 3 , b ) , ( 4 , a ) , ( 4 , b )}
(d) A = {5, 7} and B = {c, d}
[tex]A \times B[/tex] is:
A × B = {( 5 , c ) , ( 5 , d ) , ( 7 , c ) , ( 7 , d )}
Finding Cartesian Products of Specific Combinations:
(a) A = { 2 , 4 } , A × A :
A × A = {( 2 , 2 ) , ( 2 , 4 ) , ( 4 , 2 ) , ( 4 , 4 )}
(b) [tex]B = \{3, 2\}, B \times B[/tex]:
B × B = {( 3 , 3 ) , ( 3 , 2 ) , ( 2 , 3 ) , ( 2 , 2 )}
(c) [tex]C = \{1, 5\}, C \times C[/tex]:
C × C = {( 1 , 1 ) , ( 1 , 5 ) , ( 5 , 1 ) , ( 5 , 5 )}
(d) [tex]A \times B[/tex]:
A × B = {( 2 , 3 ) , ( 2 , 2 ) , ( 4 , 3 ) , ( 4 , 2 )}
(e) [tex]B \times C[/tex]:
B × C = {( 3 , 1 ) , ( 3 , 5 ) , ( 2 , 1 ) , ( 2 , 5 )}
(f) [tex]A \times C[/tex]:
A × C = {( 2 , 1 ) , ( 2 , 5 ) , ( 4 , 1 ) , ( 4 , 5 )}
(g) [tex]C \times B[/tex]:
C × B = {( 1 , 3 ) , ( 1 , 2 ) , ( 5 , 3 ) , ( 5 , 2 )}
(h) [tex]C \times A[/tex]:
C × A = {( 1 , 2 ) , ( 1 , 4 ) , ( 5 , 2 ) , ( 5 , 4 )}
By understanding how to form these products, you'll be able to handle more complex problems involving Cartesian products and relations.