The sum of -30, -15, -10, -20, and -15 is -90. The possible integer pairs (a, b) that satisfy the equation a รท b = -2 include (-2, 1), (2, -1), (-4, 2), and (4, -2).
;
Let's address the two parts of your question step-by-step.
Finding the Sum of the Integers :
We are given a list of integers: โ 30 , โ 15 , โ 10 , โ 20 , and โ 15 . To find the sum of these integers, we simply add them together:
( โ 30 ) + ( โ 15 ) + ( โ 10 ) + ( โ 20 ) + ( โ 15 )
When adding negative numbers, imagine you are moving to the left on a number line, which means the sum will be more negative.
Let's add them step-by-step:
โ 30 + ( โ 15 ) = โ 45
โ 45 + ( โ 10 ) = โ 55
โ 55 + ( โ 20 ) = โ 75
โ 75 + ( โ 15 ) = โ 90
Therefore, the sum of the integers is โ 90 .
Finding Possible Values of ( a , b ) :
We are given the condition that a รท b = โ 2 . This can be rewritten as a = โ 2 b .
To find pairs ( a , b ) that satisfy this equation, we can choose different values for b and determine a . Here are some possibilities:
If b = 1 , then a = โ 2 ร 1 = โ 2 , so one pair is ( โ 2 , 1 ) .
If b = โ 1 , then a = โ 2 ร ( โ 1 ) = 2 , so another pair is ( 2 , โ 1 ) .
If b = 2 , then a = โ 2 ร 2 = โ 4 , so another pair is ( โ 4 , 2 ) .
If b = โ 2 , then a = โ 2 ร ( โ 2 ) = 4 , so another pair is ( 4 , โ 2 ) .
This equation allows for infinitely many solutions since b can be any non-zero integer, and a will be determined accordingly.
In summary, the sum of the given integers is โ 90 , and any integer pair ( a , b ) where a = โ 2 b is a potential solution for the second part.