R ( x ) P ( x ) ∣ Q ( x ) D ( x )
x 4 − 2 x 3 + 3 x 2 − 10 x + 3 ∣ x − 2
− x 4 + 2 x 3 x 4 − 2 x 3 + 3 x 2 − 10 x + 3 ∣ x 3 x − 2
− 3 x 2 + 6 x 3 x 2 − 10 x + 3 ∣ x 3 + 3 x x − 2
4 x − 8 − 4 x + 3 ∣ x 3 + 3 x − 4 x − 2
− 5 ∣ x 3 + 3 x − 4 x − 2
− 5 x 4 − 2 x 3 + 3 x 2 − 10 x + 3 ∣ x 3 + 3 x − 4 x − 2
R ( x ) = − 5
Using the Remainder Theorem, we find that f ( 2 ) = − 5 , which indicates that ( x − 2 ) is not a factor of F ( x ) . Since the remainder is not zero, we conclude that ( x − 2 ) does not divide F ( x ) evenly. Therefore, ( x − 2 ) is not a factor of the polynomial.
;