GuideFoot - Learn Together, Grow Smarter. Logo

In Mathematics / Middle School | 2014-04-08

Simple question:

Find the derivative of [tex]\boxed{f(y)= \frac{y^2}{y^3+8}}[/tex].

Asked by 452

Answer (2)

Let's go ;D
f ( y ) = y 3 + 8 y 2 ​
we have to use the quotient rule.
f ( y ) = h ( y ) g ( y ) ​
f ′ ( y ) = [ h ( y ) ] 2 h ( y ) ∗ g ′ ( y ) − g ( y ) ∗ h ′ ( y ) ​
Then
g ( y ) = y 2
g ′ ( y ) = 2 y
h ( y ) = y 3 + 8
h ( y ) = 3 y 2
Now we can replace
f ′ ( y ) = [ h ( y ) ] 2 h ( y ) ∗ g ′ ( y ) − g ( y ) ∗ h ′ ( y ) ​
f ′ ( y ) = ( y 3 + 8 ) 2 ( y 3 + 8 ) ∗ 2 y − ( y 2 ) ∗ 3 y 2 ​
f ′ ( y ) = ( y 3 + 8 ) 2 2 y 4 + 16 y − 3 y 4 ​
f ′ ( y ) = ( y 3 + 8 ) 2 16 y − y 4 ​ ​ ​

Answered by D3xt3R | 2024-06-10

The derivative of the function f ( y ) = y 3 + 8 y 2 ​ is found using the quotient rule, resulting in f ′ ( y ) = ( y 3 + 8 ) 2 16 y − y 4 ​ .
;

Answered by D3xt3R | 2024-12-23