W e kn o w : l o g a ( b ⋅ c ) = l o g a b + l o g a c t h ere f ore : l o g b 14 = l o g b ( 2 ⋅ 7 ) = l o g b 2 + l o g b 7 = 0.693 + 1.946 = 2.639
lo g b 14 = 2.639 .
Given that:
lo g b 2 = 0.693
lo g b 7 = 1.946
Using logarithmic properties, we know that:
lo g b ( ab ) = lo g b a + lo g b b .
So, we can rewrite lo g b 14 as lo g b ( 2 × 7 ) .
Substituting the given values, we get:
lo g b 14 = lo g b ( 2 × 7 ) = lo g b 2 + lo g b 7 = 0.693 + 1.946
Now, we can add these values together:
lo g b 14 = 0.693 + 1.946 = 2.639
So, lo g b 14 = 2.639 .
Question:
Given that lo g b 2 = 0.693 and lo g b 7 = 1.946 , use these values to find lo g b 14 .
Using the properties of logarithms, lo g b 14 can be computed as the sum of lo g b 2 and lo g b 7 . This gives us the final result, lo g b 14 = 2.639 .
;