17\\\\4x-7+7>17+7\\\\4x>24\ \ /:4\\\\x>6\ \ \ \Rightarrow\ \ \ x\ \in\ (6;\ +\infty)"> 4 x − 7 > 17 4 x − 7 + 7 > 17 + 7 4 x > 24 / : 4 x > 6 ⇒ x ∈ ( 6 ; + ∞ )
17\ \ \ \ | add\ 7\\\\ 4x>24\ \ \ \ | divide\ by\ 4\\\\ x>6\\\\ Solution\ is\ x\in(6,+\infty)"> 4 x − 7 > 17 ∣ a dd 7 4 x > 24 ∣ d i v i d e b y 4 x > 6 S o l u t i o n i s x ∈ ( 6 , + ∞ )
The solution to the inequality 17"> 4 x − 7 > 17 is 6"> x > 6 , which can be written in interval notation as ( 6 , + ∞ ) .
;