D : x 2 − 2 x − 8 = 0 D : x 2 − 4 x + 2 x − 8 = 0 D : x ( x − 4 ) + 2 ( x − 4 ) = 0 D : ( x + 2 ) ( x − 4 ) = 0 D : x = − 2 ∧ x = 4 x 2 − 2 x − 8 3 x 2 − 18 x + 24 = 0 ( x + 2 ) ( x − 4 ) 3 ( x 2 − 6 x + 8 ) = 0 ( x + 2 ) ( x − 4 ) 3 ( x 2 − 4 x − 2 x + 8 ) = 0 ( x + 2 ) ( x − 4 ) 3 ( x ( x − 4 ) − 2 ( x − 4 )) = 0 ( x + 2 ) ( x − 4 ) 3 ( x − 2 ) ( x − 4 ) = 0 ( x + 2 ) ( x − 4 ) 3 ( x − 2 ) ( x − 4 ) = 0 ( x + 2 ) 3 ( x − 2 ) = 0∣ ⋅ ( x + 2 ) 3 ( x − 2 ) = 0∣ : 3 x − 2 = 0 x = 2
The solution to the equation is x = 2 , found by solving the numerator for zero and confirming that it does not make the denominator zero. The solution x = 4 is invalid as it results in a denominator of zero. Thus, the only valid solution is x = 2 .
;